

Chapter 14

Software

14.1 The Software Market

“Software” refers to programs that can be run on hardware (generally a computer).
These programs are in code. The market for software (Mowery, 1995) is distin-
guished by virtue of its particular complexity: there is not only a wealth of appli-
cations, but also a multitude of respective new versions following each other
chronologically or variants, offered at the same time, which differ in terms of their
functionalities. For many programs, it is important that they be attuned to each
other. To comprehensively describe the products of such a market in the context of
a single chapter does not appear possible, which is why we will content ourselves
with a general overview and concentrate on describing the creation of software.

As complex as the market is in terms of products, it is extremely simple from
the companies’ perspective. For commercial software, there are a select few com-
panies who dominate–we need only consider Microsoft’s monopoly status. How-
ever, in the single market segments, too, there is often a single company that “calls
the tune”. Thus, there is a clear market leader, in SAP, for programs of Enterprise
Resource Planning (ERP); the market for database system is dominated by Oracle.
Apart from commercial products, we can find Open Source software–which is just
as highly developed–such as Linux’ or Apache’s, which is the product of volun-
tary (and unpaid) cooperation between software developers. From a user per-
spective, the choices represented here are not summed up as “either/or”, but in-
creasingly as “not only but also”, since products from both worlds are often in-
teroperable (Baird, 2008).

Dominant companies, and dominant products within market segments, provide
for a high functionality in the programs, but also to a great vulnerability, since
standard programs in particular are susceptible to attack (this is where the crimi-
nal’s work investment “pays off”). Among the quality criteria for software are
thus both optimal functionality and an equally optimal software security.

In a first rough classification (Buxmann et al., 2008, 4), we can distinguish sys-
tem software (e.g. operating systems, network software or programming lan-
guages), machine-oriented software such as Middleware (“connecting” software,
which allows programs to interact) and database and application software (e.g.

312 Software

retrieval systems). Within application software, we also differentiate individual
software (which is “tailor-made” for a specific task in a company) and standard
software, which is produced for the mass market. For the latter, we classify via
the kind of usage, and are left with software for commercial usage, such as ERP or
knowledge management systems (with a multitude of programs, such as systems
for document, project, customer relationship or customer knowledge management)
(Gust von Loh, 2009), software for commercial and private usage (browsers, of-
fice software) and software for purely private implementation (such as games or
software for looking at and editing pictures). Figure 14.1 collects all these aspects
in one classification.

Figure 14.1: Rough Classification of Software.

The software products are joined by software services. Here, we distinguish be-
tween consulting and implementation services and the operation of application
software as a service. Consulting and implementation services are often neces-
sary when there is insecurity concerning the kind of software to be used or when
the required software is difficult to implement in the company (Buxmann et al.,

Software as Product

System Software Machine-Oriented Software Application Software

Standard Software Individual Software

Commercial
Software

Mixed Usage Consumer
Software

ERP Browser Games

OfficeKnowledge
Management
Systems

Multi -
Media Software

...

...

...

Software 313

2008, 7). Such service providers appear in the form of IT service companies, sys-
tem integrators or systems houses. Some consulting services also specialize in
software selection and implementation.

Certain companies decline to acquire application software and use it in-house,
instead outsourcing this operational procedure to third parties. Such companies
host application software and offer their services on a subscription basis. Here, we
speak of Software as a Service (SaaS) (Buxmann et al., 2008, 8et seq.). Figure
14.2 shows our classification of software services.

Software companies generate their revenue either by selling licenses for their
products or by offering services (or from both areas).

Figure 14.2: Rough Classification of Software Services.

14.2 Software Development

Depending on our starting point, we distinguish between five kinds of software
development (the first three following Ruparelia, 2010, 12):

 on the basis of specifications (Cascade model, b-model, V-model),
 on the basis of risk (to be avoided) (spiral model),
 on the basis of concrete scenarios (simplified model),
 on the basis of the development process (agile software development),
 component-based development (can be combined with one of the above

methods).

Software Services

Consulting and Implementation Software as a Service

IT Service Providers

System Integrators

Systems Houses

Specialized Management
Consultants

314 Software

Every software development must be both effective and efficient (Zave, 1984,
112-113). Effectiveness (“are we doing the right things?”)–called “Validation
(Building the Right System)” by Zave–is demonstrated by customers successfully
implementing the software in solving their problems, where the users are familiar
with the intended applications, but not with computer systems. Efficiency (“are we
doing things the right way?”), or “Verification (Building the System Right)”,
means that the system thus created fulfils the formulated expectations and specifi-
cations, but it also means that the (financial or personal) means applied during
production have been used ideally.

Figure 14.3: The Cascade Model of Software Development. Source: Royce, 1970, 329.

At the beginning of the traditional models of software development are the speci-
fications, in other words, what the system to be created is expected to offer in
terms of functionality. As early as 1956, Benington introduced a corresponding
model (Benington, 1987), which was fleshed out by Royce into the Cascade
model in 1970 (Figure 14.3). The way from the requirements to the working sys-
tem proceeds via several stages, which much each be planned and staffed. On the
basis of the specifications for the entire system (which also comprises hardware),
the software specifications are separated and analyzed in such a way that they be-
come programmable. Only after the program’s design has been conceived does the
actual programming (“coding”) of the desired solution begin. This is then tested
extensively and, in case of positive results, released. One should not imagine this
to be a linear and one-track process, however. Rather, there is a feedback to previ-
ous stages every step of the way. Of particular importance is the interplay of soft-

Software 315

ware specifications and program design, since it is decided only during the con-
ception of the software whether the requirements even make sense and, particular-
ly, if they are realizable. A further central feedback loop is located between testing
and product design, since here it is shown how the design “runs” during operation.
Royce (1970, 332) emphasizes the importance of project documentation, since de-
tailed notes on the acquired status of the project are necessary at every step of the
software development. To avoid errors in the product, Royce (1970, 334) recom-
mends repeating the entire process (“do it twice”), the goal being, firstly, the pro-
totype, and the operative product second. In conclusion, Royce (1970, 338) sets
out five “golden rules” of software development:

Complete program design before analysis and coding begins.

Documentation must be current and complete.

Do the job twice if possible.

Testing must be planned, controlled and monitored.

Involve the customer.

Figure 14.4: The b-Model of Software Development. Source: Birrell & Ould, 1985, 4.

316 Software

Figure 14.5: The V-Model of Software Development. Source: Forsberg & Mooz, 1995, 5.
CI = Configuration Item.

Birrel and Ould (1985) split the production process in two fundamental stages in
their b-model (Figure 14.4). The first stage–the development path–is laid out
analogously to the Waterfall model. Birrel and Ould emphasize that a software is
never “final”, but requires constant maintenance and further development. In this
respect, the second stage–the maintenance cycle–must be heeded, leading as it
does to a sequence of versions of the original software.

The V-model by Forsberg and Mooz (1995), as used by NASA, also follows
the Cascade model at first, but splits the overall process into two subphases (Fig-
ure 14.5). The process starts at the top left, with the users’ information require-
ments, and ends up at the top right, with the information system as accepted by the
user. On the left-hand side of the V, user specifications are disassembled into
“configuration items” and defined as precisely as possible, in order to be assem-
bled in an integrated way–as software items–on the right-hand side. Here, the sin-
gle (horizontal) levels correspond to each other: user requirements are opposed by
the system, as positively evaluated by the users (topmost level), the system archi-
tecture by the integrated system and the design work corresponds with the system
integration work (levels 3 and 4), so that comparisons between the different stages
of the requirements (left-hand side) and the stages of system development (right-
hand side) can be made at any given time.

Software 317

Figure 14.6: The Spiral Model of Software Development. Source: Boehm, 1988, 64.

Software development is an expensive and risky business. Boehm’s spiral model
(1988) (Figure 14.6) always keeps this risk in mind, being characterizable via
“start small, think big” (Ruparelia, 2010, 10). The elements of the Waterfall are
still granted great importance, but they are no longer run through in their entirety
at the beginning. The Cascade model’s top-down approach is replaced by a look-
ahead perspective. The first prototype is the result of a feasibility study and is thus
very primitive, but it is meant to make it possible to estimate whether the risk of
starting the project is worth it in the first place. In the second run, the requirements
are specified and analyzed. At the end of this run, there is again a prototype, which
is subjected to a risk analysis. Bit by bit–secured via a risk analysis after each
round–an operative prototype is developed, which can be fleshed out into a prod-
uct. The great advantage of the spiral model is its continuous risk estimate, and
thus its cost control of software development

318 Software

Figure 14.7: The Unified Model of Software Development. Source: Jacobson et al., 1999 and Intelli-
gent Systems.

The unified model by Jacobson, Booch and Rumbaugh (1999) starts with the
concrete case of software development and unifies aspects of both the Cascade
and the spiral model (Figure 14.7). Within the four phases (beginning, conception-
al elaboration, software construction and transition to the market phase), several
rounds of iteration are run through, as in the spiral model. Differently weighted
according to the phase, the objective is to run through six core disciplines of soft-
ware development: moulding the business model, specifications, analysis and de-
sign, implementation, testing and practical application. Here we recognize the
building blocks of the Cascade model without any difficulty. Complementing the
core process, attention is also granted to accompanying activities such as change
management or project management.

The approaches to software development sketched thus far can be summarized
as being “plan-driven”–they pursue an elaborate plan and document every step.
Not so the “light-weight” methods, such as the Dynamic Systems Development
Method, Feature-Driven Development or Extreme Programming, which, put to-
gether, we call agile software development. This method is distinguished via a
non-linear process, in which frequent, short feedback loops occur between devel-
opers, among each other, and between developers and customers, in the sense of
“inspect-and-adapt” (Williams & Cockburn, 2003, 40). The “manifest of agile
software development” formulates four fundamental behavioral guidelines:

individuals and interactions over processes and tools,

working software over comprehensive documentation,

customer collaboration over contract negotiation,

responding to change over following a plan.

Software 319

Figure 14.8: Agile Software Development with Overlapping Project Phases. Source: Cockburn, 2000.

One orients oneself more on people and communication than on set plans in pro-
ject management (Cockburn, 2000, 8). Communication itself–since it is always
less than perfect–must be guided. This is how software development becomes a
game, which is played in a team and pursues goals. Alistair Cockburn (2000, 33
and 40) describes agile software development as a “goal-directed cooperative
game” and as a “game of invention and communication”. The group of developers
starts their work as early as possible, so that project phases, which are normally
worked through one after the other, overlap. Here it is essential for the information
of each previous stage to be constantly updated (indicated in Figure 14.8 via the
dashed arrows). Updates are made via direct communication and not via written
documentation. This is expressed particularly clearly in Extreme Programming
(XP): we deliver software, not documentation (Cockburn, 2000, 141).

Since it is dependent on direct communication, agile software development is
suited for small teams (less than 50 developers) and companies that are not certi-
fied according to the quality management norm ISO 9000, because ISO 9000 pre-
scribes strict documentation. However, it is possible to combine agile software
development with one of the plan-based methods (Boehm & Turner, 2003).

Software consists of components–for instance, a text processing software will
have the integrated components of spellchecking or hyphenation (Brereton &
Budgen, 2000). It is advisable to use such components multiple times and incorpo-

320 Software

rate them into systems. This is the basic idea of component-based software de-
velopment, which dates back to McIlroy (1969). Component-based development
can be combined with any of the previously introduced models of software pro-
duction.

What does software development look like in practice? We will briefly sketch
this on the example of Microsoft. There are loosely linked small teams of devel-
opers, who frequently synchronize their work results and stabilize the product in
development. Added to this are continuous tests of the software. This “Synch-and-
Stabilize” approach (Cusumano & Selby, 1997, 54) knows different project phases
(planning, development, stabilization), but it does not run through the stages of the
Cascade model one after the other, instead pursuing an interative approach.
Cusumano and Selby (1997, 55) report:

The waterfall model has gradually lost favor, ..., because companies
usually build better products if they can change specifications and de-
signs, get feedback from customers, and continually test components as
the products are evolving. As a result, a growing number of companies
in software and other industries–including Microsoft–now follow a pro-
cess that iterates among design, building components, and testing, and
also overlaps these phases and contains more interactions with custom-
ers during development.

Thus it can definitely happen that more than 30% of specifications in the planning
phase are amended during later development stages (Cusumano & Selby, 1997,
56). The products are offered on the market as long as they are “good enough”. In
other words, one does not wait until something becomes “perfect” (Cusumano &
Selby, 1997, 60).

14.3 Globalization and “Offshoring”

The software industry is aligned internationally. Programs can–at least in princi-
ple–be developed anywhere, with transport costs, in contrast to the value chain of
physical goods, being negligible. The globalization of this industry is not only of
importance for the labor markets, but also for distribution. There are hardly any
national “home markets” for software; rather, software can be sold the world over
(Buxmann et al., 2008, 156 et seq.).

If we want to make the international buying and labor markets usable for soft-
ware production, we must decide whether to found subsidiaries abroad (or enter
joint ventures with domestic enterprises) or whether to contract a third party. The
latter method is called–no matter what country is concerned–“outsourcing”. Out-
sourcing activities abroad is either “nearshoring”, when the countries are close by
(from the U.S.A.’s perspective Canada or Mexico, from the German perspective
the Czech Republic, Poland, Hungary and Slovakia), or “offshoring”, when far-

Software 321

away countries are concerned (such as India, for companies with their seat in
Germany or the U.S.). Table 14.1 summarizes these definitions.

Outsourcing

Nearshoring

Offshoring

 Contractee has its seat...

domestically in neighbor-
ing countries

overseas

Shifting
of inter-
nal activ-
ities to...

associated enter-
prises

Nearshoring
without Out-
sourcing

Offshoring with-
out Outsourcing

foreign enterpris-
es

Outsourcing
Nearshoring
with Out-
sourcing

Offshoring with
Outsourcing

Table 14.1: Systematization of Outsourcing, Nearshoring and Offshoring. Source: Following Mertens
et al., 2005, 2.

The shifting of internal activities abroad without outsourcing means the founding
of subsidiaries or entering joint ventures with domestic companies. The goals are
cost savings via lower salaries in the target country as well as the option of tap-
ping the respective foreign markets. Since the creation of one’s own subsidiary
“from the bottom up” in an unknown country requires a lot of effort, joint ventures
with established enterprises from the target country allow a company to profit
from their knowledge of the country and preliminary work. Here the difference
between nearshoring and offshoring becomes clear. In nearshoring, the cultural
(but also the temporal) distance is far shorter than in offshoring, which means that
subsidiaries make more sense in closer proximity. The shifting of one’s activities
to foreign companies, i.e. outsourcing, can be done domestically or aim for close-
by countries (with similar cultures) or far-off countries (with the disadvantage of
cultural differences). The software industry makes use of nearshoring, offshoring
and outsourcing like few other branches of the industry. India in particular has be-
come an important exporter of software and partner of foreign software compa-
nies.

What are the motives that lead software companies to practice outsourcing as
well as nearshoring/offshoring? Buxmann, Diefenbach and Hess (2009, 165 et
seq.) detect five bundles of motives:

 Cost savings (lower salaries in the nearshore and offshore locations, but
connected to a higher coordination effort–particulary offshore),

 Higher flexibility (in outsourcing, services can be bought precisely when
needed, thus reducing one’s own fixed costs),

 Concentration on core competencies (shifting more peripheral activities
abroad while dealing with the important aspects oneself),

322 Software

 Acquiring know-how (India in particular has many and well-trained in-
formation specialists, which are not available in the national labor mar-
kets of, for instance, Germany and the U.S.–in such numbers at least),

 “Follow the Sun” (Development and Service Centers intelligently placed
around the world allow for service around the clock, due to the different
time zones).

Domestically Nearshore / Offshore

Requirement Analysis

Program Design

Programming

Module Tests

System Tests

Acceptance

Figure 14.9: Phases of Software Development Domestically and Nearshore/Offshore. Source: Follow-
ing Buxmann et al., 2009, 178.

If we regard the steps of software development, we can see that not all stages of
the creation process are suitable for nearshoring or offshoring. Buxmann et al.
(2009, 178) discuss the option of preferentially shifting abroad routine tasks such
as programming (following detailed specifications) and tests of the programmed
modules, while keeping the other steps in-company (Figure 14.9).

What are the effects of globalization on SAP? This company, based in Wall-
dorf, Germany, produces business software and is the worldwide market leader
within this segment (Schuster et al., 2009). The stage of requirement analysis is
distributed internationally by SAP (to subsidiaries as well as independent compa-
nies), since proximity to the respective customers allows the company to meet an
optimum of specific requirements. The rough planning for the project is done in
Walldorf, while the concrete program design, programming and testing are done
in SAP’s development centers, scattered around the world (Schuster et al., 2009,

Software 323

191). Apart from various smaller development centers, SAP keeps four large cen-
ters: (in order of their strategic importance) in Walldorf, Bangalore, Montreal and
Palo Alto. As far as it does not touch upon highly sensitive areas, programming
can be shifted to India. For software tests, SAP keeps a test team in Pune (India)
(Buxmann et al., 2008, 180-181.). This distributed processing results in the project
teams’ high creativity level, due to employees’ different cultural backgrounds
and–via the “Follow the Sun” principle–project working times of 24 hours every
day. The headquarters in Walldorf supervises the process of the decentralized ac-
tivities and integrates the individual work packages. The software is implemented
on location, by the customer. Customer service and system support are guaranteed
around the clock by three call centers in Walldorf, Philadelphia and Singapore.
Here, “Follow the Sun” is essential, as Schuster, Holtbrügge and Heidenreich
(2009, 192) report:

Since SAP often supports all of a company’s business processes, such a
company will be unable to operate in case of system failure, which
makes around-the-clock service availability a decisive competition fac-
tor for the customer.

14.4 Conclusion

Only available in the printed version.

324 Software

14.5 Bibliography

Baird, S.A. (2008). The heterogeneous world of proprietary and open-source soft-
ware. Proceedings of the 2nd International Conference on Theory and Practice
of Electronic Governance (pp. 232-238). New York, NY: ACM.

Benington, H.D. (1987). Production of large computer programs. Proceedings of
the 9th International Conference on Software Engineering (pp. 299-310). Los
Alamitos, CA: IEEE Computer Society Press.

Birrell, N.D., & Ould, M.A. (1985). A Practical Handbook to Software Develop-
ment. New York, NY: Cambridge University Press.

Boehm, B.W. (1988). A spiral model of software development and enhancement.
Computer / IEEE, Sept., 61-72.

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven-
methods. Computer / IEEE, 36(6), 57-66.

Brereton, P., & Budgen D. (2000). Component-based systems. A classification of
issues. Computer / IEEE, Nov., 54-62.

Buxmann, P., Diefenbach, H., & Hess, T. (2008). Die Softwareindustrie. Ökono-
mische Prinzipien, Strategien, Perspektiven. Berlin, Heidelberg: Springer.

Cockburn, A. (2000). Agile Software Development. (Online).
Cusumano, M.A., & Selby, R.W. (1997). How Microsoft builds software. Com-

munications of the ACM, 40(6), 53-61.
Forsberg, K., & Mooz, H. (1995). The Relationship of System Engineering to the

Project Cycle. Cupertino, CA: Center for Systems Management.
Gust von Loh, S. (2009). Evidenzbasiertes Wissensmanagement. Wiesbaden: Gab-

ler.
Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Develop-

ment Process. Reading, MA: Addison-Wesley.
McIlroy, M.D. (1969). Mass produced software components. Naur, P., & Randell,

B. (ed.), Software Engineering. Report on a Conference Sponsored by the
NATO Science Committee (pp. 138-155). Garmisch, Germany, 7th to 11th Oc-
tober 1968. Brussels: NATO.

Mertens, P., Große-Wilde, J., & Wilkens, I. (2005). Die (Aus-)Wanderung der
Softwareproduktion. Eine Zwischenbilanz. Erlangen, Nürnberg: Friedrich-
Alexander-Universität. (Arbeitsberichte des Instituts für Informatik. Friedrich-
Alexander-Universität Erlangen Nürnberg; 38,3).

Mowery, D.C. (1995). International Computer Software Industry. New York, NY:
Oxford University Press.

Royce, W.W. (1970). Managing the development of large software systems. Pro-
ceedings of the 9th International Conference on Software Engineering (pp. 328-
338). Los Alamitos, CA: IEEE Computer Society Press.

Ruparelia, N.B. (2010). Software development lifecycle models. ACM SIGSOFT
Software Engineering Notes, 35(3), 8-13.

Software 325

Schuster, T., Holtbrügge, D., & Heidenreich, S. (2009). Konfiguration und Koor-
dination von Unternehmungen in der Softwarebranche. Das Beispiel SAP. In
Holtbrügge, D., Holzmüller, H.H., & von Wangenheim, F. (eds.), Management
internationaler Dienstleistungen mit 3K. Konfiguration–Koordination–
Kundenintegration (pp. 174-202). Wiesbaden: Gabler.

Williams, L., & Cockburn, A. (2003). Agile software development: It`s about
feedback and change. Computer / IEEE, 36(6), 39-43.

Zave, P. (1984). The operational versus the conventional approach to software de-
velopment. Communications of the ACM, 27(2), 104-118.

